23CS21T1 - ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS (Common to CSE, CSE (DS), CSE (AI&ML), AI&DS, and IT) | Course
Category: | Professional Core | Credits: | 3 | |---------------------|--|---|-------| | Course
Type: | Theory | Lecture-Tutorial-Practical: | 3-0-0 | | Prerequisite: | Data Structures, Algorithms, and Strong programming skills in at least one high-level language | Sessional Evaluation:
Univ. Exam Evaluation:
Total Marks: | 70 | | Objectives: | To provide knowledge on advance data structures frequently used in Computer Science domain. To develop skills in algorithm design techniques popularly used. To understand the use of various data structures in the algorithm design. | | | | | Upon successful completion of the course, the students will be able to: | | | | |--------------------|---|---|--|--| | Course
Outcomes | CO1 | Illustrate the working of the advanced tree data structures and their applications (L2). Analyze algorithms with respect to space and time complexities (L4). | | | | | CO2 | Understand the Graph data structure, traversals and apply them in various contexts. (L2) | | | | | CO3 | Use greedy methods and dynamic programming to solve optimization problems.(L3) | | | | | CO4 | Use backtracking and branch and bound for solving scheduling, resource allocation, and pathfinding problems.(L3) | | | | | CO5 | Understand the fundamental concepts of NP-Hard and NP-Complete problems (L2) and will be able to analyze NP-Hard problems in graph theory. (L4) | | | | Course
Content | <u>UNIT-I</u> | | | | | | AVL Trees: Creation, Insertion, Deletion operations and Applications. B Trees: Creation, Insertion, Deletion operations and Applications. <u>UNIT-II</u> | | | | | | <u>UNIT-II</u> Heap Trees (Priority Queues): Min and Max Heaps, Operations and Applications. Graphs: Terminology, Representations, Basic Search and Traversals, Connected Components and Bi connected Components, applications. Divide and Conquer: The General Method, Quick Sort, Merge Sort, Strassen's matrix multiplication, Convex Hull. | | | | | | | <u>UNIT-III</u> ly Method: General Method, Job Sequencing with deadlines, Knapsack Problem, num cost spanning trees, Single Source Shortest Paths - Dijkstra's. | | | | | <u>UNIT-IV</u> | | | |--------------------------|---|--|--| | | Backtracking: General Method, 8-Queens Problem, Sum of Subsets problem, Graph Coloring, 0/1 Knapsack Problem. Branch and Bound: The General Method, 0/1 Knapsack Problem, Travelling Sales person problem. | | | | | <u>UNIT-V</u> | | | | | NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem (Without Proof). NP Hard Graph Problems: Clique Decision Problem (CDP), Traveling Salesperson Decision Problem (TSP) NP Hard Scheduling Problems: Scheduling Identical Processors. | | | | | Traire beneating 11 objects, beneating recitical 11 occssors. | | | | | TEXT BOOKS: | | | | | Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh 2nd Edition Universities Press Fundamentals of algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran 2nd Edition University Press. | | | | Text Books | REFERENCE BOOKS: | | | | &
References
Books | Data Structures and program design in C, Robert Kruse, Pearson Education Asia An introduction to Data Structures with Applications, Trembley & Sorenson,
McGraw-Hill The Art of Computer Programming, Vol.1: Fundamental Algorithms, Donald E | | | | | Knuth, Addison-Wesley, 1997. | | | | | Data Structures using C : Langsam, Augenstein & Tanenbaum, Pearson, 1995 Algorithms + Data Structures & Programs:, N. Wirth, PHI | | | | | 6. Data structures in Java: Thomas Standish, Pearson Education Asia | | | | E-Resources | https://www.tutorialspoint.com/advanced_data_structures/index.asp http://peterindia.net/Algorithms.html Abdul Bari, 1. Introduction to Algorithms (youtube.com) | | |